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INFORMATION PATTERNS AND NASH EQUILIBRIA

IN EXTENSIVE GAMES*

by

Pradeep Dubey and Mamoru Kaneko

1. INTRODUCTION ,v--#

".In this paper/e explore the relation between information patterns
tje

and Nash Equilibria in extensive games. By informationws mean what

players know about moves made by others, as well as by chance. For the

most part w . pure strategies. But in Section 7

behavioral strategies are also examined. It turns out that V3. can

be modeled as pure strategies of an appropriately enlarged game. -u " -

results, applied to the enlarged game, can then be reinterpreted in terms

of the behavioral strategies of the original game. c< . . .

The extensive game model is of fundamental importance and captures

the interplay between information and decision-making. Yet we find that

its definition, as set forth by Kuhn in 1S], is insufficient from certain

points of view. It is unable to incorporate games with a continuum of

players. Also it often makes for an unnaturally complex representation.

For instance, a game in which n players move simultaneously can be

described in the Kuhn framework. But first we would have to order the

players artificially and then have them move in sequence with suitably

This work was supported by an O.N.R. Grant N00014-77-0518 issued under
Contract Authority NR 047-006, as well as an N.S.F. Grant SES82-10729.
The second author was, in addition, provided a travel grant from the
National Institute of Financial Research (Japan).

This paper is an extensive revision of Part I of [1]. We are
., indebted to an anonymous referee, and to David Kreps, for several sharp

suggestions.
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enlarged information sets. If we try to carry this out when n is not

finite but a continuum, the difficult), of the procedure becomes clear.

Therefore we are led to develop a variant model which has the feature

that several players can move simultaneously at any position in the game.

Games of the type in [5] are, of course, included as a special case of

our set-up.

In Section 2 we develop our model and illustrate it with an

example. In the rest of the paper, we focus on the effect on Nash Equi-

libria (N.E.) that is caused solely by changes in the information pattern

of an extensive game. In Section 3 we show that if information is re-

fined, without increasing players' knowledge about chance moves,then

the N.E.'s of the coarse game do not disappear. But the converse is

not true: in general there is a rapid proliferation of new N.E.'s.

In the next section, Section 4, we explore conditions under which this

proliferation is arrested. The notion of "no informational influence"

is introduced. It says that if a single player unilaterally changes

his strategy, then the resultant new outcome tree does not pass through

any other information set of the remaining players than the old one did.

This is a purely set-theoretic condition and can hold not only in non-

atomic, but also in finite, games--see the examples in Section 4. We

prove that if it holds then a Nash outcome of the refined game is also

that of its coarse form, i.e., is not a "new" N.E. brought about by the

increased strategic (threat) possibilities. When we turn to non-atomic

games, no informational influence holds in full force and we get: Nash

outcomes are invariant of the information pattern (see Section 5). This

leads to the "Anti-folk Theorem" in Section 6: the N.E.'s of a repeated

game are precisely those which are N.E.'s in each stage.
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2. EXTENSIVE GAMES IN SIMULTANEOUS MOVE FORM

2.1. Extensive Games: The Definition

An extensive game r in simultaneous move form is a seven-tuple:

(2.1) r (N U {c), X, i, {SxEX, (, {hiliEN' {IiiN "

Let us explain our symbols. (Unless otherwise stated, all sets are

assumed to be non-empty.)

(i) N is the set of all players, and c denotes chance (c f N)

(ii) X is the set of all positions in the game, one of which, x0

is distinguished and represents the start of the game.

N(iii) r maps X to 2 U {c} . If r(x) is a non-empty subset of

N then it denotes the set of players who move simultaneously

at the position x If n(x) = {c} then chance moves at x

(Note that players and chance never move together.) Finally if

I(x) 0 0 then x is an ending position of the game. It will

be convenient to partition X into the three sets:

XN = {x E X : r(x) c N, r(x) 0}

Xc = {x E X : r(x) = {c))

cc
:~~ x=- {xC EX : u(x)--)

(Note that X c  and X E may be empty.)

x(iv) For each x E X , S is a set of functions from r(x) to some

x a x x xset Y . We assume tnat r(x) =0...S = 0 Given sX E S

t E yx and i E v(x) , denote by (s Xi, t) the function from

"(x) to Yx which assigns t to i , and agrees with s

elsewhere. Also let sx stand for sX(i) . Our assumption on

S x is:



(2.2) if s , r xE , then (s x rX) E Sx for all i E (x)

Define Sx = {sx : s E S } for i E n(x) . Note that, by (2.2),
1 1

x xx
(2.3) if t E Sx and sx E Sx  then (s-i, t) E Sx1

and, by (2.3),

(2.4) if %(x) is finite, Sx = 1 S x  (where n denotes
iEn (x) 1

Cartesian product).

Sx  is the set of moves available to player i at the position
1

x and S is the set of move selections at x by the players

in (x) that are feasible in the game.

(v) € links positions to moves. Put X* = X-{x O } . Let 7 be the

xO x I x,' 0 x1 m)

collection of all finite sequences (s , s , ...,s ) with

s k k for k = 0, 1, ... , m . Then * is a one-to-one

mapping,

X *F

such that:
x xO x

(a) if s E , then (s E O(X*)

X0  X 1 XM 1 Xm

(b) if (s , s ,...,s ,s E (X*) ,then
" xo xl x-I

(s 0, s 1 s ) =i xm ;
X xm x x

(c) if 4 (x) = (s , ...,s ) and s E , then

x x0 , m, X) E (X*)

Since € is one-to-one, we will sometimes identify x with

.
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x X
O(x) , and say that x = (s , ... ,s ) for x E X* This

x0 x r,
should cause no confusion. Thus, if O(x) = (s , ...,s we

x x
will write (x, sX) for (s , ... ,s , s ) , etc.

To describe the rest of the game we need to develop some more

terminology. If (x, sx) = y for some sx E SX then we will say that

y immediately follows x and write x I y . If there exist

-- * ,  m  in X such that x x  ".4 x y then y follows

x (or x precedes y ), and we write x . y . (Then is a partial

order on X with x as its unique minimal element. Also note that
0

for an) x E X* the set of all predecessors of x form a path, under

from x0  to x ; and o(x) lists them sequentially, along with

the moves selected at each position that lead from it to its immediate

follower.) Continuing with our definition

(vi) A--possibly finite--sequence {Yo. y'k' * is called a play

if (a) y0 = 0

(b) Yk Ykl for all k

(c) y E XE if Yk is the last element of the sequence.

(vii) A union of plays A = U p is said to be an outcome tree (or,
aacE

more simply, an outcome) if

(2.5) for x E Xs-XE
{ s x if C(x) f c)

E Sx  (x, sx) E X} =I-a singleton set otherwise.

The set of all outcomes depends upon the five-tuple

r (N, X, r, {S xEX' 0) and will be denoted A(r ) Each

h. is simply a real-valued function on A(r) and gives the
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payoff to player i for any outcome of the game. (Normally chance

moves have probabilities attached to them, with the result that

X gives rise to a probability distribution on plays in r Then

h i  is taken to be the expectation of a payoff defined a priori

on plays. See Section 7.)

(viii) I. is a partition of X. = {x E X i E n(x)) and is called

1 2

the information partition of player i . If x and y are two

positions in the same set of player i's partition

(x, y E u E ) , then this means that i cannot distinguish

between x and y . It is natural to impose some constraints

on the {I i in view of this interpretation. FirstjEAN

(2.6) if x, y E u E I. , then S = S

If this were not so, then i could distinguish intrinsically

between x and y . Given (2.6) we will, without confusion,

talk of the set of moves S which is available to i at (each
1

position in) his information set u . Next we assume

(2.7) No play passes through an information set more than

once, i.e., for any play p and any information set

u we must have Ip n ul _< 1 , where II denotes

cardinality. (For a discussion of (2.7) see Remark 1.)

This completes the definition of the game r

,4



Remarks

(1) The condition (2.7) follows from the assumption of perfect

x x
recall (see 15)). Take y in X , 0(y) = (s , ... ,s . Then if

i E w(x) for some 0< t < m, s. =t , and x vE 1. we will

say that " y follows from v via the move t of player i ," and

denote this by (v,t) -< y . The perfect recall assumption may now be
i

stated:

x, y E u E
(2.8) E - (v,t) < y

(v,t) < x i
i '

It says that at any position each player can fully recall the entire

history of his previous information and moves. Technically we need only

the weaker condition (2.7), though we feel that it is more natural to

postulate perfect recall. Indeed when we restrict ourselves in Section

7 to behavioral--rather than mixed--strategies, then (2.8) is implicitly

assumed. For then, by Kuhn's theorem in [5], behavioral strategies suf-

fice for the analysis of N.E.'s.

2.2. An Example

Consider:

N = {1,2,3,4) ; X = {x1, x1 , ...,x26}

7r(x) -- {1,2} , i( ) - {c} , i(x ) = {3,4) for t = 2,*..,6
0 .t

and l(xt) 0 for t ; 7, ... ,26

x 0
-,-S = "alt aI)' (clip 62)) (a2) 61)p (a2' 62)) ' i e.,

.x 0  x 0

so1 a,,) and S2 Ui s18



xl
S = c1, C-7

S 
%t

t -xt

Sxx

'= l N21 and S 4 1 619 6 21 for =

x t
S = 0 for 7, 26

-(x2) = (alp a) D(x3 ) (2" 6 ), '2).

"(x4) ((al, 82). c2) 4(s) =(2p 61 etc.;

."2 x) , 03 = {x2 9 x Ix4, o x5  x and

1 = {{x, x , x x {x

The tree of this game is:

1,2

i C

m" ~ ~ ~ ~ ~ ~ ap ,2) h te ftisgm

FIGURE 1

•A L ,



{al' ' {l' 2 ' { 1' Y2 , 6 j are the moves of players

1, 2, 3, 4.

{X0 , X2 , X7} , {X0 , Xl, x3 , x11, x4 , xlT} are in A(F )

2.3. Nash Equilibria
x

Fix a game r = (N U {c}, X, r, {S })xX' ', {hi)iEiN' {iiEN)

as in Section 2.1. The strategy-set of player i in r is made up of

all possible choices of moves available to him in X. under the proviso
1.

that he must make the same move at positions that are indistinguishable

in his information set. It is the set Z. (r) consisting of all maps
1

o. from X. to U S x  which satisfy•.1 1 xC . 1
AEX

a(i) c(x) E S x

(ii) ai(x) = ai(y) if x, y E u E I i .

Thus we can also think of a. as a map a. : I. - .U " • and, with-
. xEx.1- 1 x .1

out confusion, a. will be used in both senses. Given a strategy-choice

o = {aii. , where each a. E Z (r) , abbreviate {a(x)i. by
i iEN 1 i ETrx

a (x) for x E XN. Then o is called feasible if

(2.9) o(x) E Sx for all x E XN

Let z(r) be the set of all feasible strategy-choices in r . We

assume throughout that z(r) is not empty (see Remark 2). Define the

strategy-to-outcome map z •(r) -* A(r) by:

m~m

(2.10) (o) = {x E X if O(x) = (r , .,r ,x E X and

xi
0 < i < m, then r = O(x )}

°."
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(Note that chance always picks all of its moves in t(a) .) From (2.5)

it easily follows that &(o) is indeed an outcome in A(F ) But not

everything in A(r_) need be achieved by strategies in Z(F) . It will

be useful to define A(r) = c((r)) , the set of outcomes that are

feasible in r . (In the example of Section 2.2, the outcome

{x O , x 1 , x 3 , X1 3 , x x16 } is in A(r) but not in r(A) .)

Next, given a E z(r) and Ti E Zi(r) , let (oJTi) he

same as a but with o. replaced by T. By (2.3), (oL i ) also
1 1

.- in E(r) , and therefore our next definition makes sense. T 1-ategy-

choice a E z(r) is called a Nash Equilibrium (N.E.) of r ii, Zor

all i E N

(2.11) hi((clTi)) < hi(a)) for all i E E i(r)

The outcome C(o) produced by an N.E. a of r will be called a Nash

outcome of r

Remarks.

(2) If N is finite then, by (2.4), it follows that Z(r) is

non-empty. But in our general set-up we have made no connection between

the information sets and the feasibility condition (2.9), so it is not

possible to deduce that Z(r) is non-empty. We find it more economical

* .. to assume non-emptiness here rather than to seek the extra conditions

that will imply it.
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3. PRESERVATION OF NASH OUTCOMES

We will focus on the effect on Nash outcomes that is caused solelV

by changes in the information pattern of the extensive game. For this

purpose we take a pair of games r , I* which are identical except

for their information patterns {I0} *} Our sharpest result
i iEN 'i iEN * u hretrsl

is in the case when N is finite, though many of its corollaries con-

tinue to hold in general. We therefore break up this section into two

parts.

3.1. The Finite-Player Case

For simplicity, denote I(r) , Z(r) (r*) , Z(r*) by
ii

zi  , z, . For a E Z , define:

R i (a) = {x E Xi  x E &(ojT,) for some Tj E Zj and j E N"-{i}

i.e., Ri(a) is the set of positions that are reachable in F via

unilateral deviations from a by players in N-{i} . Also define the

sets Ii(x) I (x) to be the (unique) sets in I. I.* that contain

x . (If x 9 Xi  then I (x) is understood to be the empty set.)

Proposition 1. Assume

(i) N is finite

(ii) a is an N.E. of F

(iii) For all i in N

(a) x, Y E Ri(o)

I.(x) (Y) ' i(Y)

. (b) xy E (OT n X

for some T.' E Zi (x) = (Y)

Ii(x) = 1(v)

a a-



Then there is an N.E. o* of r* such that &*(c*) = C(c) . (Here

" are the strategy-to-outcome maps in r* , r ).

., Proof. For any i E N , put

A* {I*(x) xE R.(o)}

i i 1

Fix v* E A* . Then, by (iii) (a),

(3.1) x, y E v\* n Ri(o) Ii(x) I i(y )

Therefore we can define the map A : -+ I. by:1

Ii (v*) Ii (x) for any x E v* n R i (a)

Now construct o* : {o*} by:
i iEN

(3.2) o (y*) : ai(4.(v*)) if v* E A*

1 arbitrary if v E B.

By (i) and (2.4)

S(3) a * € *•

Step1. 1 *(o) €(o)

Since C*(o*) and &(o) are outcome trees, neither *(o*) (o)

nor &(a) C *(o*) is possible. Therefore, if C*(o*) . (a) , there

are plays p* and p , with:

p

p c~o-~(*
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Let x be the first position on p, starting from the root x0x0 Xm

which is not on p* , i.e., x 0 (x) = (s , s has the

property:

x E p 'V

{X0 , ....Xm} c p n p*

x
Clearly 7(xm) 0 0 . If r(xm) {c}., then x = (xm, s m) E p n p*

by (2.5), a contradiction. If r(xm) * {c) , then since x E R.(c)

for all i E N , we have, by (3.2),

*m mSo.(x) =oi(x) for all i E r(x)

so x E p n p* , again a contradiction. This verifies Step 1. The

Proposition will now follow from

Step 2. For any r* in Z* there exists a T. in Z. such that

Define f. :*(o* IT*) n X - U S. by"." J J J xE * (o*IT*]nxj

(3.4) f (x) = (X)

We claim that for any x, y E &*(o*I T)

(3.5) If x E n*(c*I ) A X. and i E N-{j}, then o*(x) = (x)

(3.6) If x, y *(o*I *) n X. and I (x) =I(y) then f.(x) f.(y)

. .. .
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x0  x

We shall establish (3.5) and (3.6) by induction. If x = (s , 14

say that the length of x from x0  is R+1 . Put:

X = {x E X : the length of x from x0 is < 2)

Xk = X n x for all k E N
kk

Denote by (3.5) (3.6) the statements (3.5), (3.6) but with X.
R R 0 1 0

X. replaced by X X respectively. Observe that (3.5) ° and (3.6)0

are trivially true. So it suffices to show that

(*) (3.5)k and (3.6) (3.5)+ 1 and (3.6)

Let f. denote the restriction of f. to n(o*[rj) x . By (3.6)J- J J J-

there is an extension of f. to a strategy f. in Z. • Then, bymmJ J J

(3.5)k, (3.4) and the definitions of f L and E

(3.7) n*(a*I.!) x 1 -(o1 ) n x

By (3.7), it follows that

(3.8) n*(o*Ij) n x c R. (a) if i E N,,{j.

By (3.8) and (3.2), we get

•.(x) oi(x) if x E &*(C*I1*) n x. and i E N%.{j)

o-.l
proving (3.5)k 1. Next take x, y E &*(a*IT) n x with I.(x) Ij(y.

By (3.7) and (iii)(b), I*(x) = I*(y) . Therefore, by (3.4),

Z+1
f.(x) = f.(y) proving (3.6) * This establishes (*) and thereby

-" .
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(3.5) and (3.6). From (3.6) we see that f. can be extended to a

strategy t. in E . By (3.4) and (3.5), C(o*C!T= ~ This

verifies Step 2.

Q.E.D.

An Example

1' ~2 y'l 2

X 7 ----------------- - ----------- -

x 3 X

c* S

FIGURE 2
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Here

x2 = {xo

xl = {Xo, ...,x6}

r , r* have the solid, broken information patterns

"' a aare moves of player 1

61 , a 2  are moves of player 2

(o) = {X0 , X1 , x7} = play marked with arrows.

(C)= {x, x1, x2)

,(C3 2) n x, = {xO} for k 1, 2

C(o TI) n X1  {xo, x1} or {X0, x3 , x4  .

( a is any strategy-choice that leads to the marked play &(c)

and T1 P T2 range over all strategies of players 1, 2.)

It can now easily be checked that (iii)(a), (iii)(b) hold for r

. o Thus if E(o) is Nash in r , it will also be Nash in T

Remarks

(3) Observe that, by (2.7),

(3.9) No chance moves in the game = (iii)(b) automatically holds.

Thus (iii)(b) says that there is no informational gain regarding chance

moves in going from r to r* at a . However, this needs to be true

for player i only under his own unilateral deviations.



-217

(4) Say r- r* if each 1* is a refinement of Ii , for all

i E N . Then

(3.10) r -i r* - (iii)(a) automatically holds.

We can think of (iii)(a) as a weakening of r-i r* . It requires that,

in the region reached by others' unilateral deviations, there is no in-

formational loss in going from r to r* at a

(5) The scope of Proposition I will become clear later since

many of the propositions that follow will be its simple corollaries when

N is finite. Let us point out one such immediately. For any game r

let n(r) denote the set of all its Nash outcomes. They, by (3.9) and

(3.10), we have

N finite

r -i r*

(3.11) either (a) no chance moves * n(N) c T(r

or (b) (iii)(b) holds at

each a in Z

(This, in the case of condition (a),is essentiallythe Propositionin [2].)

(6) The preceding remark leads one to investigate the possibility

of Proposition 1 for the general N case. The difficulty arises in

6deducing (3.3) from (3.2). One would need to make more measurability-

type assumptions on the structure of the game to overcome this difficultn.

For instance consider:
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X, aoX

~X' CX

{i E (y) i(.) C 5.E
(**) i ={ix):x € X' 0 i  , i E N -- is in 1

B. = {1I.(x) xExnxi 1

yE X

Here d is an algebra of subsets of N which includes all singleton

sets. Also require:

r(x) E CI for all x E XN

T c T(x)

- X X sXi'!T E 0 * the combination (sTrT €)-
Sx xx

s , rX S

Finally enlarge R.(o) in (iii)(a) to include positions reached by

player i's own deviations. Then all these conditions together enable

us to go from (3.2) to (3.3), and yield Proposition 1 for general N

Possibly (**) can be deduced from more elementary assumptions on the

tree, though we have not explored this.

3.2. Nestedness of Nash Equilibria under Refinement

We now prove (3.11) without the assumption that N is finite.

First note that if r -3 r* there is a natural sense in which

.. Ei c . : simply identify a. E. with a* E E* where oi(x) = oi(x)
i 1 i 1 i

' for all x E X.* % 1

Proposition 2.1. Assume

(i) r-3 r*

(ii) a is an N.E. of r

(iii) condition (iii)(b) of Proposition 1 holds at a E Z

Then a is an N.E. of r*

............
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Proof. Set a* = a and repeat, mutatis mutandis, the argument in Steps

I and 2 of the proof of Proposition 1.

Q.E.D.

As an immediate corollary we get a global version of Proposition 2.1:

Proposition 2.2. Assume

(i) r -s r*

(ii) condition (iii)(b) of Proposition 1 holds for every c E

Then r(r) c n(r*)

(Note: if there are no chance moves, then (iii), (ii) of Propositions

2.1, 2.2 automatically hold.)

Proposition 2.2 shows that, if we refine information and if there

are no chance moves (or else (ii) holds), then the N.E.'s of the coarse

game are not lost. But there is no dearth of examples to convince one

that, more often than not, there is a rapid proliferation of new N.E.'s.

Consider the three games rl r 2 r 3 with the information patterns

given below. The payoffs are given in Figure 3.

Oo

I
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(2,2,2)

(2,1,1

(3,3,3)

(13,13,13)

3 (4,4,4)

(14,14,14)

(15,5,5)

FIGURE 3. The Gamte r

31

42

FIGURE 4. The Game r

* - -I .- - 2
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33

X

X

The Nash plays in each case are marked by X . Those of are pre-

served in r +1  (1 = 1, 2) in accordance with Proposition 2.2.

4. NO INFORMATIONAL INFLUENCE

We are interested in investigating conditions under which this

proliferation of Nash plays it arrested. The next proposition makes

an advance in that direction, and constitutes a partial converse to

Proposition 2.1. For ' E * define D.G5 c I* by:

(4.1) D.) {I* (x) x E n*5 flx*

i.e., D.(o) is the collection of i's information sets through which

the tree &*(c) passes. We 5ay that i has no informational influence

on j at a in r* if

(4.2) D(o*) D (o IT*) for all rT' E Z

. . . . 1



Proposition 3. Assume

i) r -r

(ii) o0 is an N.E. of T

(iii) each player has no informational influence (on every other

player) at c* in r*

(iv) L*(O*) E A(r) , i.e., C'(o) is feasible in r

Then there is an N.E. a of r such that &(a) = C*(c*) . (Indeed

every a E E (r) , for which C(a) = E*(o*) , is an N.E. of r

Proof. By (iv) there is a a in E such that &(a) = &*(a*) • Then

it must be that for all i E N

(4.3) a.(x) = a*(x) if I!(x) E D.(o*)

Take any t. C i . . Since r- r* we can define T* E . by:.,J J J J

(4.4) T*(x) = ".(x) for x E X.

The Proposition will follow if we can show that: E*(C*IT) &(oJTj)

" s

If * holds, then there is some x OW) (s 0 ...,s m) such that

(4.5) x E .(ot.) and x -

and

(4.6) x0, ... , xm C (o1r) E C*(o*I=)

Clearly, by (4.5) and (2.5), n(xm) # {c) . By (4.6) and (iii),

I"(Xm) E D.(o*) for all i E N(xm)'-{j} • Therefore, by (4.3),

(4.7) a(Xm) = o*(x) if i E 7(Xm)s{j} ;

and, by (4.4),

-



(4.8) Tj(x m =* '"(x ) if iE 7r(x)

By (4.7) and (4.8),

(4.9) (0*IT*) (X) (oI T (x)

by (4.6) and (4.9), the position (xm (O*JIr*)(X ) x and is in
J m

E*(G*IT*) nl (ahr) contradicting (4.5).

Q.E.D.

To clarify (4.2) consider the gamies in Figure 6.

x

4~4

FIGURE 6
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1'l a2} and {alp a2 are the moves of players 1 and 2.

The solid, broken lines give the information patterns of r ,
* *

At any o in F* which gives the play x0  to x as an

outcome, no player has an) informational influence. But if c* gives

the outcome {x0 to y} then player 2 has informational influence on

player 3.

The condition (iii) of Proposition 3 is undoubtedly severe, though

it is a natural one in the context of a "large number of small players,"

not necessarily non-atomic. Suppose N = {l, ...,1000) . Let

S = {, ...,500) and T = {501, ...,1000) . The game r is as follows.

First all players in S move simultaneously, and each i E S selects

a real number r. in the closed interval [0,1] . The players in S
I

can observe r. But there is a grid on their scale which does not
iES

permit very fine measurements. They can tell only that [ r. lies in
iS

one of the intervals

[0,10), [10,20), ... , [490,500)

After S has moved, then the players in T move simultaneously, and

again each of them can select a real number in [0,1] . Suppose there

is a Nash equilibrium in which I r. = 145 (One can easily concoct
iES "

payoffs to make this so.) Then no player will have any informational

influence at this N.E. The resulting N.E. play is marked in Figure 7.

If any one player in S changes his strategy, this will change the

play but no one in T can observe it because the new play continues

to pass through [140,150) . If we call the below game r* and let

F be its coarsening in which players in T observe nothing (i.e. have
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the information set marked by dotted lines in Figure 7) then all the

conditions of Proposition 3 are met.

- /-

S

FIGURE 7. The Games r ,

Remarks

(7) If there are no chance moves, then Proposition 3 is a

corollary of Proposition 1 when N is finite. In this case (iv) of

Proposition 3 holds automatically. (The trouble, with chance moves,

is that (iv) may not hold in general.)

(8) A stricter version of (4.2) is

(4.2)* DW(a*) = D.(*IIT*) for all "* E "

Then we will say that i has strictly no informational influence on

j . In the non-atomic case (Section 5, Lemma 2) it is in fact (4.2)*

that obtains.
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5. NON-ATOMIC GAMES

5.1. The Definition

For simplicity we will assume, throughout Section 5, that there

are no chance moves. (The) will be incorporated in Remark 9.) We need

to specialize the set-theoretic structure of r to treat non-atomic

games. The player-set N is now equipped with a non-atomic measure.

Precisely, we have a measure space {N,B,V) . B is an a-field of

" subsets of N which includes the singleton sets {i} , i E N ;I

is a non-atomic probability measure on {N,B} . Each YX (for x E XN )

is also assumed to be a measurable space. We now add the following con-

ditions on the ce#Stft e.nt6 of r , over and above those in Section 2.1,

(i)- (viii).

(ix) For any x E XN , 7(x) is a non-null set in B

(x) For any x E XN , there is a measurable correspondence fx from

7r(x) to yX and Sx consists of all measurable selections

from fx , i.e., of all functions g : Tr(x) - YX which satisfy:

(a) g(i) E fX i)

(b) g is measurable.

(xi) For any x, y E XN , the set {i E N y E Ii(x)) is measurable.

These conditions are fairly innocuous. The sine qua non of the

non-atomic assumption is in the next, and final, condition. It says

that null sets of players and their moves cannot be observed by an) of

the others.

S E B is called null if i(S) 0 , non-null if it is not null.
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Xo Xl xC yo YO Y
(xii) If x = (s , s , ...,S y = (r , r , ...,r J , and

i E N satisfy (where yO xo ):

(a) x E v E I y E v EI
x2  y2

(b) if x2 , y E v E I. , then s. = r.

x
(c) E({j E (x ) n 7(y ) s. = r }) - j((x )) = r( 2))

for £0, 1,..., m, then

xE v E I y E v I.

This completes our definition of a non-atomic game. Note that (x) easil"

implies

(5.1) s? = fX(i)

(5.2) If 7r(x) is a disjoint union of measurable sets rl(X)

and Tr2(x) , and gl 1(x) -.Y , g2 : 
(x) ". are

measurable functions which satisfy gl(i) E fX (i) for

i € 7( , g2 (i) E fx(i) for i E 7r2 (x) , then the

function g :r(x) -+ Y , obtained by putting together

91 and g2  will belong to S

It can be checked that (ix)-(xii) are consistent with the earlier

assumptions in (i)-(viii), i.e., there are models of games that satisfy

(i)-(xii). See the example in Section 6.

5.2. Invariance of Nash Plays on Information Patterns

We will establish that if (i)-(xii) hold for a game, then the

N:tsh plays are invariant of the information pattern that the game is

endowed with.

We prepare for this with
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Lemma 1. Let r satisfy (i)-(xi). Then A(') = A(r)

(Note that, since there are no chance moves, outcome trees reduce simply

to plays.)

Proof. Recall that a play is a sequence of immediate followers, start-

x x0ing with the root x. Given our identification x O(x) = (s ,...sx0  x xm

let p = (s , s , ...s , ... ) E A(') . Put U. U I(x ) and
iEr(x 2

U U U . For x EU , let

yy (x) =i E r(x) n T(x) x E Ii(x )}"" y 2.) f * ' he y 2. N yi

By ,if 2. * k , then y k W l y (x) = 0 . By (xi), each y (x)

is measurable. Therefore, by (xi), so is

ax) = 7(X) - U y (x)

Let be any element of Z(r) (which is non-emnty by assump-

tion) and now define a on XN by:

. s. if x E U and i E y (x) for some 2 > 0

a .(x) if i E 7r(x) but ii U y(x)

Since {y (x) : k = 0, 1, ... ) are disjoint, this a is well-defined.

It can be checked (inductively, starting at x0 ) that (a) = p

It remains to verify that a E Z(r) . It is clear that if x, y E u

for some u E I. then o (x) = a (y) . Therefore it is sufficient
1i

to show E(:) E Sx for all x E XN If x E XN,U , then a(x) o (x)

----------.- -I- I. .-..
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and oc(x) E S x by assumption. If x E U for some k > 0, then

r(x) is the disjoint union of {y (x) 0 = 0, 1, ... ) and a(x)

x xk
By (2.6) and (5.1), fx(i) = f (i) for i E y (x) Also, clearly

U yW(x) c n(x) . But then by construction, the map a(x) on r(x)
k xi

(given by oi(x) for i E r(x) ) coincides with s on "I (x) for

all £ > 0 . Hence a(x) is a measurable selection from fx on

U (x) . On the other hand, o(x) coincides with O(x) on a(x)
k

and is, a fortiori, a measurable selection from fx on a(x) . Therc-

fore by (5.2), a(x) E Sx

Q.E.D.

Lemma 2. Suppose r satisfies (i)-(xii), and a E X(T) . Then each

player has strictly no informational influence at a in r

Proof. Let 0 {(x)}x . Consider T. E I (r) . Put

" 0  x x YO yl
&(a) = (s. . . ) and &(OJT) = ( , r 0 . , )

where Yo - xo . It will suffice to show that for any k and any-
" :x 0  x)YO r)

i E N-{j}, if x = (s ,.0 .s)andy = (r0 r) then (a),

(b), (c) of (xii) are satisfied. Make the inductive hypothesis that

we have shown this for £ = 0, 1, ..., k and consider the case

SXk YO Yk
.. = k+l . Now Xkl = (s , ... ,s ) and Yk~l = (r , ... ,r )

Then, by (xii),

(d) x,+ C v C I. - kl C v C I. for i E N{jl
4+ Ev i Yk+ i

Hence

For 1- 0 the hypothesis obviously holds.
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(e) 7!(x E A~ ~
m (e (k+l)'-{ j ) = o,(k~l)*-{j} (=k~l)

xk+l kl
s = r. for i E Ak1s 1

From (e) and (f):

A k = {i E 1T(x n + ' ~1 r Yk+l
kk~l ) ~k= r1  }

hence, since p4{j}) = 0

(g) j.Ak+) = 1(Xkl)) = ffYk+l))

k+1-l

This verifies the hypothesis for Z = k.l

Q.E.D.

Fix a six-tuple L = {N, X, w, {S, {h.}i for which

all the assumptions in (i)-(viii), as well as (ix), (x) hold. Denote

by V(L) the set of all games obtained by adding information patterns

to L subject to (2.6) and (2.7), as well as (xi) and (xii). For any

r E V(L) , recall that n(r) is the set of all its Nash plays.

Proposition 4.1. n(r) ; n( ) for any r r' in V(L)

Proof. Denote by {IiIiEN {Ti iEN  the information patterns in

r , r For each i E N , let I.! be the common refinement of I.
11

and T. , i.e.,1

I={v* X : v* , v* v n for some v E Ii  and v E Jil

Consider the game r* obtained by adding I* to L . We will show
1

that -* E r(L) . Clearly I* is a partition of X. For any
i 1

x, y E XN: {i E N y E Ii(x)) = {i E N y n li(x) n (x)}

= {i E N: y E Ii(x)} n {i E N y E Ti(x)} . Since each of the last
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two sets is measurable, so is the first, and thus I* satisfies (xi).
1

We omit the straightforward check that 1* satisfies (2.7). Final]y1

x0 x1 x myo Y Ym
take x = (s , s , ,s ) , y = (r r r ) , and i E N

(where x0  YO ) such that

(a*) x E v* E I* .y E v* E I* ;
"-"££ r

x
(b*) If x£, y£ E v* E I! , then s1  =

(c*) Condition (c) of (xii) holds.

In (a*) let v* = v n v for v E Ii , v E TI Then x E v* x E v,

and y E v* = £ v . From this it follows that (a*) implies:

xE vE I. N- E vE 1.

i.e., (a) of (xii) holds for I. • In the same manner (a) of (xii) holds

for I i and (b) of (xii) holds for both Ii I (c) is indepen-

dent of the information pattern and depends only on x and y . To

sum up, (a), (b), (c) of (xii) are satisfied for x , y , and i in

both r , r . Then by (xii),

(d*) x E v E Ii  y E v E I.

(e*) x E ~ I i-y E T i.

Let x E w* E I , w= w n ~ for w E I , E . Then x E w

and from (d*), y E w Similarly, y E Hence y E w* . In the

same way, y E w* x E w* . This proves that condition (xii) is also

satisfied by r* • Consequently r* £ V(L)

By construction, r-4 r* and r-3 r* By Proposition 2.2,

•r.nr) c i(r*) and n(F) c n(r*) . Let o* be any N.E. of r* In

the wake of Lemmas 1 and 2, we can apply Proposition 3. This tells us

, ... , o . • ..°I



that there are N.E.'s a in r' and c in rsuch that
- ,. .*(. " " (" ) . Since a* was arbitrary, (*) c n7) and

* n,(r *) C: nUT) ,therefore nUT) =n(F*) ('
Q.E.D.

5.3. A Variation on the Theme

The condition (xii) is fairly stringent. Each player has no in-

formational influence on others, not even on a null set. on the other

hand absolutely no assumption was made on the payoff functions in proving

-Proposition 4.1. We now relax (xii) to (xii)* but at the expense of

having to add conditions (xiii) and (xiv) below. Then Proposition 4.1

can still be retrieved, as Proposition 4.2.

Condition (xiii) says, roughly, that if two positions differ onl

on account of null sets not containing a particular player i then

i cannot tell them apart.

x 0  x1 IX Y(O Y Y
(xiii) If O(x) = (s , s . ... ,s )and 0(y) =(r , r ., r

satisfy, for i E r(x) (with y( x0),

(f) hain{j E (x ) a(Y ) n 7ro. Then ro os(x io 9)
for z 0, 1, ... , m

(g) for all k 0, 1, m i E 7r(x i E r(y

i ~Th ntondition (xi says ro nghly ofstsy that thewyostin diffe nly

on paysun "oduo null sets.tcnann atiua lyr ite

(xi) I () fo all £ , 1,.,m, sian () sr , r. rm

TheCf next codto ({xv) is on pafs. It say tha the depend

onplys"mdlo nllses



33

x x
(xiv) If two plays p = (s , s , ...) and p' = (r , r ,..

satisfy

Ci) ud{j E r(x ) n ) s r = =•J 2.

for all 2 > 0;

(j) i E Tr(x2 ) ,: i E 7r(y) , for all k > 0

(k) i E w (x£) s = r. , for all 2k > 0

then h. (p) = hi (p')1 1

In the light of (xiii) and (xiv) we weaken (xii) to:

(xii) No positive informational influence. Each player i has strictly

no informational influence on almost all other players (i.e.

all except a null set).

Let L* be a six-tuple as before, but assume this time that the

assumptions (i)-(viii), (ix)-(xi), as well as (xiii), (xiv) hold. De-

fine V*(L*) exactly as V(L) but with (xii) replaced by the weaker

(xii)*.

Proposition 4.2. n(r) = n(r) for any r , r in V*(L*)

Proof. It is sufficient to show that for any N.E. a of r , there

is a N.E. a of r such that C(a) =

Let &(o) = (s , s , ...) . Select a a in E(f) such that

)= () . This is possible by Lemma 1.

Suppose o is not a N.E. of ' . Then there is an T E ()

for some i E N such that hi(Z( i)) > h(Z(3)) . Let
" ( l ,) ( YO Yl

.' -- ( 0 , r , "") (Yo xo) ' Then condition (xii)* implies
.1
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-P{j E iCx) E T,(>. ) : s. £ r. ) : (7 ,x )) = i=>'d))£ J J £-

for all > 0

w w win
Choose an T . E I.(r) such that if O(x) =(t , t ,...,t)

satisfies

y, w
(f*) p({j E T (y) n r(w : r. = t. j d ,

for all 2k = 0, 1, m.., m

(g*) for £ = 0, 1, ... , m , i E r(y) i E n(w)

Y, w
(h*) for 9. = 0, 1, ... , m , if i E 7r(w ) then r. = t •

£ 1

then Ti x) (yl) . Assumption (xiii) ensures that this choice of
1 i in+l

a0  a1
T i  is possible. Let WI(ri) = (q , q , .••) , with a0 - x0 .

From the construction, it is clear that

(i*) for all k > 0 , p({£ E 7(a) n i(y) a. = r.

i= C(a)) = CJ(CO() ;

(j*) for all 9 > 0 , i E Tr(a) i E ir(y£)
k• X

a s  )'a(k*) for all 1£ > 0 if i E ,(a then qi r .

Therefore, by (xiv), we have h i(oIrT)) : hi(Z( i)) . That is,

h i ((ali) ) = hi( ( I >)) hi(Z(')) = h i (o)) . This is a contradic-

tion.

Q.E.D.

If (xii), (xii)* are violated then Propositions 4.1, 4.2 break

. down. Non-trivial counterexamples can easily be obtained by modifying

the "dilemma game with runour" in [].

The careful reader must have noticed that we have defined a Nash

* --.. .. .'.- . - .- .' .,.. - ."; - -. . .. ,' . . .i - -i
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Equilibrium by requiring that all1 --as opposed to "almost all"--players

must be optimal in accordance with (2.11). This is because, in our

opinion, the very basis of an N.E. is individual optimization, and

ignoring even a single player would go against the grain of this notion.

Remarks

(9) If chance moves are always countable, then an analogue of

Proposition 4.1 (or 4.2) is possible. Take two non-atomic games F

r* differing only in information. Suppose (iii)(b) of Proposition I

holds at all strategies in both directions, i.e., in going from F to

r* and r* to r . Then we can show that n(r) = n(r*) . (Naturally,

condition (xiv) has to be strengthened to apply to outcome trees, rather

than just plays.) If chance moves are uncountable then we would need

additional measurability assumptions in the spirit of Remark 6.

(10) An asymptotic version of the non-atomic result has been ex-

amined in part II of [1].

6. THE ANTI-FOLK THEOREM
2

Let r be a non-atomic game in strategic form, i.e., r(x0) = N
x0  x

and every s E S constitutes an ending position. Further assume

that the condition (xiv) holds. In this context that simply says:

x0 x0 x0 0 x0 0X
if -p({j E N : s0 * r ) = 0 and s. 0 r0 then h.(s = h.(r )

i.e., the payoff to any player depends on his strategy and the measur-

able function of others strategies modulo null sets.

Consider an infinite repetition ro of r , in which each player

1That is why the "almost all" variations of assumptions (xii) and (xii)*,
(xiii), (iv) would not suffice for our results.

2For a further discussion of this topic see 14].
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can observe at each stage the entire past history of (a) his own moves

and payoffs, (b) the measurable functions of others' moves, modulo null

sets. The payoffs to plays in r are assigned by some rule (e.g.,

lim inf , discounted surn)...it doesn't much matter. Then F satis-

fies (xii), (xii)* (and, also, of course (i)-(xi), (xiii), (xiv)).

Consider the game r C  obtained by coarsening r as shown in Figure 8

i.e., each player observes nothing at the end of any stage in C

Clearly both Propositions 4.1 and 4.2 apply.

r

NN

N

FIGURE 8

This says that the Nash plays of rC  are identical with the Nash plays

of rm . If we denote the strategy set of i in r by E. , then

clearly his strategy set in r* is (Z)W , i.e. a strategy for him
C 1

is to simply pick an infinite sequence each of whose elements is in

It is a short step fron this to verify that the Nash plays of

K1



r (hence of rF ) are typically "small." Indeed if we assign the
C1

payoff to a play of r by the discounted sum of payoffs in each stage,

then it is obvious that

°12n

(a , a ... , , ... ) is an N.E. of ro= each o is

an N.E. of r for k = 1, 2,

This is in sharp contrast with the "folk theorem" ([4], [6]). These

players have enormous informational influence, and a stupendous prolif-

eration of Nash plays is obtained in ro.

7. BEHAVIORAL STRATEGIES

Our description of extensive games in Section 2 permits us to

model behavioral strategies in r as pure strategies of an associated

game r , in the case when N is finite. The preceding results

then apply to r and can be reinterpreted within r . For ease of ex-

position we shall make the restrictions:

(7.1) X is a finite set

(.7.2) There are no chance moves.

Note that (7.1) implies that not only N , but also players' moves and

the length of the game are all finite. However o the restriction

that N is finite, is substantial, all the others are made for nota-

" * tional convenience.

iAssuming this will always exist, e.g. by requiring that the payoffs
are uniformly bounded in r.

*i* i ".
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The idea behind going from r to r is roughly as follows.

Consider the game r' where fai a Bta aetemvsoV 2 2Y ~ aetemvso

{1,2}

FIGURE 9

1, 2. The behavioral strategies of 1, 2 are the sets

B 2{b 1 2
B b (b , b) E R b + b =1}

2 .

Construct the game as follows:

I C/7

B xB 1 b2
1 12

FIGURE 10
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At x0  players 1, 2 choose b, b from B, B At the resultant
1' 2 1' 2

position x, c picks (all ' (2' 1 ' (al' 2 (a 2, 62) with

probabilities b 1 bI  b xb2 1  1  2 2 2
1 2 1 2 , b 1b 2 , b I xb2 The payoff to

the outcome arising from (bl, b2) in r is

h.(b=2 2 ki
S(b b2 ) bb 2hi(ak, a) where h. is the payoff function

k=l Z=1

of i in r . Then the pure strategies of f correspond exactly to

the behavioral strategies of r . We now extend this picture to the

general case (assuming (7.1), (7.2)).

A behavioral strategy bi  of player i is a function on Xi

which assigns to each x E Xi  a probability distribution bi (x) on

x
S. i.e.,

bit(x) 1 and bt (x) > 0 for all t E S x

• tES~x

This must also satisfy b.(x) = bi(y) if x,y E u E I. Denote by

Bi  the set of all behavioral strategies of player i . Put B = E B
iEN

Any b E B induces a map Pb : X - R where Pb(x) is the product of

the probabilities on all the arcs, going from x0  to x , assigned

according to b . If we restrict Pb to XE then we get a probability

B
distribution on XE. The payoff to i in is the expectation:

xEXE

* (Since r has no chance moves and is of finite length, outcomes can be

identified with points in XE and we may view hi as defined on XE E

A B.
We now proceed to construct r which will represen, r in
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the format presented in Section 2. A cap will consistently be used to

distinguish constituents of r from r

(a) The player-sets are identical: N = N = {1, ...,n)

(b) There is an onto map 6 X -o- X which preserves positions

in the sense: 6(X.) = X. for i E N and 6(XE) X E

(c) Followers are preserved under 6 , i.e.,

x )'1 m 6(i) > 6(9) for alli, 9 E 5 N U ,XE

(d) i(x) = i(6(x)) for all x E X.

(e) Chance moves come iimmediately after players' moves, and only

then, i.e.,

(i) xEX , x I cN ' ~ Ty

(ii) iT(y) = {c) there is an x E N such that

(f) For x E 5. the moves in r at x are precisely probability

distributions on the pure strategies S available to1

i in T , i.e.,

JX X A. x s. (t) 1, s.(t) > 0 for all t

, i

, - (g) Chance moves in mimic the moves picked with positive

probability in r by the immediately preceding players.

In other words, suppose = Ci, and (4) = {c}

By (e)(ii) we have x E XN " We require

S= t E S. t> 0
iE7r(x)t 0
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(h) x E X N

i.y~()= 6i,~
I.I

-h 
(6 

€ )

6( )

(Note: sy c S6 (X) by (g).)

(i) Since 6 : X Xi is onto, and Ii partitions Xi

6 yields the partition I of i.e.,

I= {16 (v) : vE I. .1 1

It can be checked that, starting from the root x0  x0 , the properties

(a)-(i) give a (unique) recursive construction of the tree of f in

terms of r . To complete the definition of f it now remains to specify

the payoff functions 1 . , i E .1

There is a one-to-one onto map from behavioral strategies of player

i in rB  to his pure strategies in ^ . This map 'p : B. " i is

given by:

i(bi) =

where

ai () = bi(6(R)) for all R E i .

Put p = (*1' "'"n )  i.e. * maps B to r) with

*(b) = C(bl, ....bn) = ( 1 (bl), ... , (bn)) Take any X E A()

There there is some S E Z(r) such that a) = Define1

^ ^ B ,-1
(7.3) hiO ) = hitr (a))

lWe define h i only on EZ() rather than on z(U) . This is suffi-

cient for the current purpose.
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It can be easily checked that if a(o) = (') for , a' in Z(f)

then P = P (- , Therefore h. ) is invariant of the choice

of G , and (7.3) serves as a definition of h.. Note that payoffs1

are faithfully preserved under ip

B Bhh(b) h (bl,... ,bn) = hiC&(*l(bl),...,*n(bn)

Hence

(7.4) b is an N.E. of r B i (b) is an N.E. of .

Thus, to analyze behavioral strategy N.E.'s of r , it suffices to con-

sider pure-strategy N.E.'s of r

From the initial pair of games r , r* we derive r ,

Propositions 1, 2, 3 can be applied to ^ , . Using the isomorphism
FB

they can then be transferred to r , *B . We shall work this

out in detail for some cases. First, for any behavioral strategy-choice

b denote by C (b) the support of Pb ' i.e., & (b) = {x E X : Fb(X) >O

is the set of positions reached with positive probability under b

Consider Proposition 3, for instance. To interpret it with behavioral

strategies, take r-i r* . It follows immediately that

(i)" r

Further suppose

(ii)' a is an N.E. of •
f.A

(iii)' No player has informational influence at a in r*

(iv)' E*(G*) E A()

Then, by Proposition 3, any a E Z() with () = *) is an N.E.

of .

Put b = *) , = " (8*) . From our construction of r

.o.2
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one can easily verify that (iii)' is tantamount to:

(7.5) For any j E N

{I!(x) : x E (*Bb*) n x.) {I'.(x) x E (*Bcb*lc*) n xi

for all c. E B* and i E N ,{j}i i

To interpret (iv') first note that:

(7.6) P() = {*( *) =P -1 = P 1

Therefore (iv)' says:

(7.7) Pb* = Pd for some d E B

Now, using (7.4) and (7.6), we have

fb* r an * .E. *B [ d, given by (7.7), is

b* is an N.E. of r *B an N.E. of rB

(7.5) and (7.7) hold

which is Proposition 3 in terms of behavioral strategies. As an example,

reconsider the game of Figure 6, but with behavioral strategies for

players 3 and 4 in r* (the refined game), as shown in Figure 11.

" i(Arrows indicate pure moves.)

. --
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o.S.

I 4

b 1-b b I-b

S(a 6

;.- : {1,2 )

FIGURE 11

The conditions (7.5) and (7.7) are met at these strategies. Therefore

if the outcome is Nash in the refined game it will also be Nash in the

coarsening.

Next consider Proposition 2.1 for r , r Condition (iii)

of Proposition 2.1 says (in the context of r ) that for all i E N

Bx, y E (bc) n Xi  for some ci E B.
(7.8) 1* Ii(x) =

Ix) = Ii(y)

-2 , B  ,B
So we have, translating Proposition 2.1 from r , " to r, r

r' -5 r
oB

b is an N.E. of r {b is an N.E. of r*

(7.8) holds

"- ', "'". ,""- " ;' . ,, .' . '. '-','.: - . ." -,"''' - - . ," .
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Thus, in the coarse game in Figure 12, (7.8) holds at the strategies

indicated. We conclude that if the), are Nash in r ,then the,, remain

Nash in r*

d 1-d d /1-d d 1-d d 1-d

FIGURE 12

Similarly Proposition 1, applied to 1' and r can be interpreted

in r and r*B *We leave this to the reader.
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LIST OF NOTATIONS

For the reader's convenience we append a list of notations which are

used frequently.

r = extensive = (N U 1c), X. IS x {hi {

gamexEX' ' iEN' iiE

N = player-set

c = chance

X = set of all positions

- 0 = root = start of game (x0 E X)

1T(x) = set of players who move simultaneously at x , or {c,
or empty

X. = set of player i's positions = {x E X : i E 7(x)}

XN = players' positions c U X.
iEN z

Xc = positions for chance moves {x E X :T(x) =

XE = ending positions = {x E X :r(x) = 0}

S set of move-selections at x by (x) (Note:

xS = 0 Tr(x) = 0 .)
S = set of moves of i at x (for i E r(x) )

£ 1
x X

O *(x) =(s ,...,s m = path from x0  to x and moves picked along it

x. y = y immediately follows x (i.e., y = (x, sx) forI x x
some s E Sx )

x - Y = Y follows x x precedes y)

Splay(,.e., k..=p....... . ..... )

= outcome tree (union of plays Mi wkij€ CAC. ACC . I ;

F = same as F without {h and {Ii1iE Ni iEN iE

A(r.) = set of outcome trees in F

h. : A(r) R = payoff function of player i

Ii = player i's information partition on X.
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= strategy-set of player i in r

m(r) = strategy-selections feasible in r

o = element of r(r)

oi = player i's strategy in o

E(r) - A(r_) = strategy-to-outcome map

A(r) U(r)) = set of outcomes feasible in r

I Ii(x) = information set of player i that contains x ( Ii(x)

is empty if x 9 X. )1

n(r) = set of Nash outcomes in r

r-3 r = r is an information-refinement of r

Br = the game with behavioral-strategies on r

A B
r = enlargement of r so that P corresponds to

(Note: in r we consider only pure strategies)

B. = set of behavioral strategies of i in r

B = product of B. over i E N

b = element of B

b. = player i's behavioral strategy in b

"o1
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